Acta Cryst. (1964). 17, 1545

The Crystal Structure of the High Temperature form of Niobium Pentoxide

B. M. GATEHOUSE

Department of Industrial Science, University of Melbourne, Parkville, N. 2, Australia

AND A. D. WADSLEY

Division of Mineral Chemistry, C. S. I. R. O. Chemical Research Laboratories, Melbourne, Australia

(Received 16 November 1963)

High temperature Nb_2O_5 is monoclinic, space group P2, with fourteen formula units in the cell:

 $a = 21 \cdot 16, b = 3 \cdot 822, c = 19 \cdot 35 \text{ Å}; \beta = 119^{\circ} 50'.$

Twenty-seven of the Nb atoms are in octahedral coordination and one is tetrahedral. The structure contains ReO_3 -type blocks of two different sizes. At one level these are three octahedra wide and five long, and are joined, by sharing edges on both sides, into slabs running right through the structure in two directions. The second kind of block, three octahedra by four, cements these together by additional edge sharing, and leaves tetrahedral holes partly, but systematically, filled with niobium atoms. This form of Nb_2O_5 is the member n=9 of a possible series of structural homologues $\text{Nb}_{3n+1}\text{O}_{8n-2}$.

Introduction

It is becoming increasingly clear that oxide and chalcogenide systems contain a wealth of problems equally interesting to the crystallographer and to the chemist, physicist or ceramist concerned with their properties. Their crystal structures can be straightforward and related to well-known kinds; but often the atomic arrangement is far from simple, and if such is the case it may be easier to describe by taking it to pieces, as it were, in order to identify fragments of different kinds joined by regular discontinuities of one sort or another (Wadsley, 1963), in much the same way as a polypeptide or protein is referred to a sequence of amino-acid residues.

We are currently exploring the crystal chemistry of pentavalent niobium and its binary and ternary oxides which constitute a considerable gap in the literature. Niobium pentoxide itself occurs in several different modifications, the number and indeed the identity of its forms at the present being uncertain, and each appears to have a structure of some complexity. There is general agreement about the high temperature form obtained from a slowly cooled melt, or by heating the other varieties to 900 °C or more. We now wish to report its structure, using methods which recognize fragments of the ReO₃ type within it, and to speculate briefly upon the likely existence of related structures.

Experimental

A crystal of dimensions $0.03 \times 0.03 \times 0.05$ mm was selected from a melt of high purity niobium pentoxide

(New Metals and Chemicals) annealed for a further 72 hours at 1000 $^{\circ}$ C. The lattice parameters, given in Table 1 with the rest of the crystallographic

Table 1. Crystallographic data for Nb₂O₅

System: Monoclinic Unit-cell dimensions:

$$a = 21 \cdot 16, b = 3 \cdot 822, c = 19 \cdot 35 \text{ Å}; \beta = 119^{\circ} 50'$$

Systematic absent reflexions: None Possible space groups: P2 (No. 3), Pm (No. 6), P2/m (No. 10) $D_m^*: 4.55 \text{ g.cm}^{-3}$ D_x (for Z=14): 4.55 g.cm⁻³ $\mu = 502 \text{ cm}^{-1}$

* Holtzberg, Reisman, Berry & Berkenblit (1957).

constants, were derived from a Guinier film internally calibrated with potassium chloride, and are in good agreement with previous estimations summarized by Roth (1959). The hol, h1l and h2l levels were recorded by the integrating Weissenberg technique, each with four films simultaneously exposed to filtered copper radiation. Less than half of the possible reflexions were strong enough to be recorded. Measurements of intensity were made by visual comparison with a calibrated film strip and reduced to structure factors with the Elliott 803 computer programmed in Autocode for Lorentz-polarization corrections. Specimen absorption was neglected. Fourier summations and structure factors were computed on SILLIAC at the University of Sydney, and we would like to acknowledge the generous assistance of Dr J. G. Sime who wrote special sub-routines to lighten the task of plotting out the very large Fourier maps. Scattering

1546

curves for Nb⁵⁺ were derived from the tables of Thomas & Umeda (1957) corrected for dispersion, together with Suzuki's (1960) curve for doubly ionized oxygen. Towards the end of the analysis it became clear that several of the more intense reflexions were severely affected by extinction. As the main objective was to determine the positions of the large number of atoms in the unit cell and to examine the principles upon which the structure is based, a high degree of refinement, requiring reliable corrections for extinction and perhaps for double Bragg scattering as well, was considered to be unnecessary.

Structure determination

One may assume with some confidence that the axis of symmetry of length 3.8 Å corresponds to the length of an NbO₆ octahedral body diagonal. The ideal octahedron, projected down this axis, appears as a square of oxygens with the metal, in this case niobium, together with an overlying oxygen atom, present at the centre. Octahedra are commonly joined in oxide structures by having edges and corners in common (Fig. 1), and two-dimensional methods are usually sufficient to work them out, as overlap is restricted to the metals and one oxygen for each. The initial problem was to find the positions of the twenty-eight metal atoms by interpreting the Patterson projection, P(u, w). There will be only fourteen to find if they occupy twofold positions of the space groups P2 or P2/m as both are centrosymmetric in projection on to (010). Owing to the short b axis there was little likelihood that the fourfold positions of P2/m, $\pm (x, y, z), (x, \overline{y}, z)$ would be used.

Fig. 1. Ways of joining two octahedra: (a) By a corner, one oxygen in common. (b) By an edge at different levels, two common oxygen atoms. (c) By an edge at the same level, two common oxygen atoms. Arrows attached to the metals (small black circles) indicate direction of distortion, with the distances (projected down a body diagonal) between them.

The first requirement for a trial structure of metal atoms was to position seventy oxygen atoms around them in the unit cell, either in the unique positions of Pm, or single and twofold in P2 or P2/m. Initially it can be assumed that oxygen atoms are in 'ideal', or undistorted, positions, the number of them being more important at the preliminary stages than their real parameters. If all the octahedra are joined by corners only, the formula must be BO_3 , and a reduction in the number of oxygen atoms can be achieved by omitting them entirely from the structure — an unlikely event — or preferably by joining octahedra by their edges (two bridging oxygen atoms) at the same or at different levels along the *b* axis (Fig. 1). When joined by corners, the distances between metals can be expected to be about 3.8 Å, but 3.4 Å or 2.8 Å in projection when joined by an edge (Wadsley, 1961). A trial arrangement of metals containing these distances should therefore lead to the ideal positions for oxygen. The application of this 'formula criterion' requires a virtual solution of the whole structure, and the model eventually selected for refinement contained fewer errors in the ideal positions for oxygen than of niobium.

A second important criterion arose from the presence of a sub-cell. Although the films gave little or no evidence of it, the Patterson projection P(u, w)(Fig. 2) which was prepared without sharpening, contained parallel ridges of strong vectors at right angles to each other, the vector peaks themselves being unusually sharp and well rounded, and with an abundance of 3.8 and 2.8 Å separations. The majority of the niobium atoms evidently form a grid more or less orthogonal, with two of the octahedral diagonals aligned parallel to the sub-cell axes and the third extending upwards along b.

Fig. 2. Patterson projection P(u, w), zero contour dotted.

When the origin of a tracing of the Patterson function on a transparent sheet is transferred to one of the vectors on an identical underlying one, keeping the axial directions parallel, the coincident peaks comprise a reduced vector set containing the atomic positions but not the origin of the unit cell. In a structure of the present kind where there are many heavy atoms separated by only two or three different distances, and therefore many coincident interactions between them, the reduced set will almost certainly not be the fundamental one, and the method must be continued as before but with two maps of the reduced set. We decided instead to use the restrictive tests already outlined. A single superposition eliminates some of the vectors, and if the coincident peaks are plotted on squared paper and called metal atoms, and the octahedra are sketched in to give the correct orientation based on the sub-cell, then the numbers of atoms of both kinds must agree with the experimentally determined contents of the unit cell, Nb₂₈O₇₀, if the model is to receive any further consideration.

Several models were tried and rejected, but each nevertheless contained an identical feature, three octahedra at one level sharing corners and alternating with three at a level y/2 below, joined with edges in common and extending along one direction of the sub-cell (Fig. 3). This grouping has already been noted in the pseudobinary oxides TiNb₂O₇ and Ti₂Nb₁₀O₂₉, where it was convenient to call it an S unit (Wadsley, 1961). In niobium pentoxide it evidently cannot continue indefinitely as a two-dimensional sheet, but will be interrupted at regular intervals as in NaNb₁₃O₃₃ (Andersson, 1963). The breadth of these finite units of three in the other sub-cell direction also emerged from the image-seeking technique. At one level, arbitrarily taken to be y=0, the octahedra are five deep, while at the other level, $y = \frac{1}{2}$, they are four. Viewed separately these 3×5 and 3×4 groups. of infinite extension in the third direction (out of the plane of the paper), are slabs of the ReO₃-type structure.

Fig. 3. Characteristic feature of Nb₂O₅, three octahedra (heavier outline) sharing edges with three at a level $y = \frac{1}{2}$ above and below (lighter outline); an S unit, found in related phases (Wadsley, 1961; Andersson, 1963).

Closer examination of the reduced vector set seemed to indicate that the 3×5 groups were staggered and joined together at the same level by sharing edges (Fig. 4(a)), the terminal atoms being 3.4 Å apart. These groups run right throughout the structure and the 3×4 units will then fit into the open spaces between them. The formula for this model, however, is Nb₂₇O₇₀. An extra metal atom could be present in one of two positions p or q, each of which can be visualized as an additional octahedron linking the 3×4 blocks together (Fig. 4(b)), the overlying oxygen being supplied in the complete structure from the 3×5 blocks above (and below). But with this procedure, which could be neither confirmed nor dismissed by image seeking, the model would lose its centre of inversion. The two alternative positions for this twenty-eighth niobium atom are identical but with different senses in the now polar model.

Three cycles of iterative Fourier syntheses projected on to (010) with all ninety-eight atoms in the single positions 1(a) or 1(b) for the space group Pm showed the structure to be substantially correct, but considerable uncertainty centred around this one metal atom which appeared to move in between the neigh-

Fig. 4. ReO₃-type blocks present in Nb₂O₅. (a) Blocks $3 \times 5 \times \infty$, joined with common edges. (b) Isolated blocks $3 \times 4 \times \infty$. The dashed squares p, q, r and s are the four additional octahedral sites discussed in the text.

bouring 3×5 blocks. These provide another two alternative octahedral positions r and s of the same kind (Fig. 4(a)). However, a careful analysis of the positions of the metal and oxygen atoms appearing in the electron-density projections showed, within limits of error, that a centre of symmetry did indeed exist if this one dubious atom alone were ignored. A re-location of the unit cell relating both kinds of ReO₃-type block across the centre of symmetry could lead to the correct formula only if a metal atom in projection were present at the origin of it. One additional metal, together with its overlying oxygen atom and one more oxygen atom as well, must also occupy unique positions; all of this was not in conflict with the electron-density projections. The metal at the origin has tetrahedral coordination, not octahedral like the remaining twenty-seven. Its distances to neighbouring metals in projection were 3.4 Å, and it alone of the metals was out of line with the sub-cell.

This revised model refined with F_o Fourier syntheses to a reliability index of 18%. Some of the oxygen atoms can be identified with small peaks (Fig. 5), but the map as a whole contains much false detail arising from series termination. The centres of the metal peaks, their heights and curvatures, were estimated by the Gaussian ellipsoid approximation (Dawson, 1961); the contributions of these atoms to the structure factors were subtracted from the scaled observed data and processed in an $F_o - F_{\rm Nb}$ synthesis. Several of the strong reflexions, obviously affected by extinction, were omitted.

Fig. 5. F_o electron-density projection on to (010), arbitrary scale. Heavier contours are the metals, and the lighter the oxygen atoms and series termination effects at half of this scale; zero contour dotted.

Thirty-five of the oxygen atoms of the asymmetric unit are recognizable in Fig. 6, and only one of the thirty-six, O(20) lying directly over Nb(15), is poorly defined. A final $F_o - F_c$ synthesis gave additional small shifts as well as removing some minor ambiguities. At this stage the reliability index was 11.8%, and the structure was refined no further.

The crystal providing the data was evidently not ideally imperfect. Extinction, which reduces the intensity of the strong reflexions appearing at low angles, is likely to be accompanied by double Bragg scattering reinforcing the weaker ones, as Willis (1963) showed in a recent neutron diffraction examination of UO_2 and ThO_2 . Perhaps for these reasons as well

Fig. 6. $F_o - F_{\rm Nb}$ electron-density projection on to (010) showing the oxygen atoms. Contours at equal arbitrary intervals, zero contour dotted. Metals indicated by black crosses.

Fig. 7. Tetrahedral environment provided by O(19) and O(21), Nb(1) black circle, alternative position dotted.

Table 2. Fractional atomic parameters

	Space	group P2	2 (No. 3);	unique	axis b	
	\mathbf{Point}					
	posi-					
Atom	tion	\boldsymbol{x}	$\sigma(x)$	y	z	$\sigma(z)$
Nh(1)	l(a)	0		0.25	0	
Nb(2)	1(d)	ł		0	ł	
Nb(3)	2(e)	0.1623	0.0005	0	0.0000	0.0005
Nb(4)	2(e)	0.2354	0.0002	0	0.2310	0.0005
Nb(5)	2(e)	0.3017	0.0005	0	0.4544	0.0005
Nb(6)	2(e)	0.3609	0.0005	0	0.0447	0.0005
Nb(7)	2(e)	0.4331	0.0005	0	0.2776	0.0005
Nb(8)	2(e)	0.5635	0.0005	0	0.0936	0.0005
Nb(9)	2(e)	0.6303	0.0005	0	0.3239	0.0005
Nb(10)	2(e)	0.0938	0.0005	0.5	0.2007	0.0005
Nb(11)	2(e)	0.1598	0.0002	0.5	0.4245	0.0005
Nb(12)	2(e)	0.7028	0.0005	0.5	0.1237	0.0005
Nb(13)	2(e)	0.7701	0.0005	0.5	0.3513	0.000
Nb(14)	2(e)	0.8990	0.0005	0.5	0.1635	0.000
ND(15)	2(e)	0.8020	0.0002	0.5	0.3891	0.0005
$\mathcal{J}(1)$	1(0)	U I		0.5	2	
J(2)	$\mathbf{I}(a)$	0.191	0.004	0.0	2 0.904	0.004
$\mathcal{O}(\mathbf{a})$	$\frac{Z(e)}{Q(a)}$	0.200	0.004	0	0.442	0.004
	<u> </u>	0 200	0.004	0	0 114	0.004
U(5)	2(e)	0.194	0.002	U O	0.941	0.002
	Z(e)	0.261	0.002	0	0.014	0.002
O(1)	$\frac{2(e)}{2(a)}$	0.200	0.002	0	0.249	0.002
	2(e) 2(e)	0.398	0.002	ŏ	0.480	0.002
O(10)	2(e)	0.407	0.002	Õ	0.155	0.002
O(11)	2(e)	0.461	0.002	0	0.384	0.002
O(12)	2(e)	0.460	0.002	0	0.037	0.002
O(13)	2(e)	0.535	0.002	0	0.292	0.002
O(14)	2(e)	0.590	0.002	0	0.198	0.002
O(15)	2(e)	0.663	0.002	0	0.428	0.002
O(16)	2(e)	0.657	0.004	0	0.096	0.004
O(17)	2(e)	0.743	0.004	0	0.340	0.004
O(18)	2(e)	0.883	0.004	0	0.128	0.004
O(19)	2(e)	0.944	0.002	0	0.028	0.002
O(20)	Z(e)	0.965	0.004	0.5	0.075	0.004
O(21)	2(e)	0.068	0.002	0.5	0.406	0.002
O(22)	Z(e)	0.125	0.002	0.5	0.211	0.002
O(23)	Z(e)	0.104	0.002	0.5	0.915	0.002
O(24) O(25)	$\frac{2(e)}{2(a)}$	0.966	0.004	0.5	0.447	0.004
0(23)	$\frac{2(e)}{2(a)}$	0.255	0.004	0.5	0.010	0.004
O(27)	$\frac{2}{2}(e)$	0.426	0.004	0.5	0.241	0.004
O(21)	$\frac{2}{2}(e)$	0.594	0.004	0.5	0.091	0.004
O(29)	$\frac{2}{2}(e)$	0.658	0.004	0.5	0.312	0.004
O(30)	2(e)	0.732	0.002	0.5	0.231	0.002
O(31)	2(e)	0.799	0.002	0.5	0.455	0.002
O (32)	2(e)	0.793	0.002	0.5	0.130	0.002
O(33)	2(e)	0.862	0.002	0.5	0.365	0.002
O(34)	2(e)	0.845	0.004	0.5	0.029	0.004
O(35)	2(e)	0.933	0.002	0.5	0.265	0.002
O(36)	2(e)	0.000	0.002	0.5	0.126	0.002

Fig. 8. Drawing of atoms in Nb₂O₅ projected on (010). Smaller numbers are metal, larger oxygen.

Octahedral		Nb–O distances (Å)	O-O distances (Å)			
metal	Bonded* oxygen atoms	(same order as in column 2)	Average	Max.	Min.	Average
Nb(2)	2(2); 9(2), 11(2)	1.91(2); 1.99(2), 1.97(2)	1.96	2.83	2.74	2.77
Nb(3)	34'(2); 7, 5, 19' 18'	1.92(2); 1.98, 1.96, 2.16, 2.17	$2 \cdot 02$	3.11	2.54	2.84
Nb(4)	24 (2); 3, 5 8, 6	2.06(2); 2.06, 1.98, 1.84, 1.92	1.98	3.23	2.28	2.76
Nb(5)	25 (2); 4, 6 9, 15'	2.03(2); 2.04, 1.92, 1.85, 2.01	1.98	3.17	$2 \cdot 34$	2.78
Nb(6)	26 (2); 12, 10, 7, 16'	2.01(2); 2.19, 1.85, 1.92, 2.14	$2 \cdot 02$	3.39	2.53	2.89
Nb(7)	27 (2); 10, 13, 11, 8	2.02(2); 2.16, 2.00, 1.84, 1.98	$2 \cdot 00$	3.13	2.44	$2 \cdot 80$
Nb(8)	28 (2); 16, 14, 12, 12'	2.02(2); 1.95, 1.82, 1.89, 2.31	2.00	3.12	2.31	2.78
Nb(9)	29 (2); 17, 15, 13, 14	2.04(2); 2.24, 1.77, 1.81, 2.14	2.01	3.11	$2 \cdot 49$	2.81
Nb(10)	3 (2); 24, 23, 36', 21	2.06(2); 2.00, 1.85, 1.80, 2.14	1.99	3.19	2.28	2.78
Nb(11)	4 (2); 25, 31', 22, 23	2.04(2); 2.07, 2.04, 1.80, 2.00	2.01	3.17	2.34	2.79
Nb(12)	16(2); 32, 30, 28, 26'	2.09(2); 1.85, 1.84, 2.02, 2.24	2.03	3.25	2.31	2.81
Nb(13)	17 (2); 33, 31, 29, 30	1.98(2); 1.82, 1.79, 2.11, 2.06	1.96	3.00	2.49	2.75
Nb(14)	18 (2); 36, 35, 32, 34	2.00(2); 2.02, 1.73, 2.00, 2.26	2.00	3.00	2.54	$2 \cdot 80$
Nb(15)	20 (2); 22', 1', 33, 35	1.91(2); 2.03, 1.89, 2.00, 2.14	1.98	2.97	2.69	$2 \cdot 80$

Table 3. Octahedral niobium. Interatomic distances

* Given by numbers only (Table 2 and Fig. 8). The first, followed by (2) and a semicolon are the two oxygen atoms lying over and under the metal. The distances between these oxygen atoms and metal atoms throughout the table have e.s.d.'s of ± 0.08 Å. The remaining metal-oxygen distances are ± 0.05 Å.

as the possibility of absorption, no meaningful overall thermal parameter was obtainable on a Wilson plot of $|F_o|$ and $|F_c|$. Were these optical effects to be measured and then removed from the experimental data, a most necessary task for further refinement and an almost impossibly laborious one for a unit cell of this size, the individual temperature factors, except perhaps for some of the oxygen atoms, would still be small for a compound with a melting point about 1500 °C.

There are two tetrahedral positions at the origin (Fig. 7). If the space group is P2/m, Nb(1) must be distributed equally over 2(i), $\pm (0, y, 0)$ with y approximately $\frac{1}{4}$, while the atoms in twofold positions will be in 2(m) or 2(n) with y=0 or $\frac{1}{2}$. The alternative

P2 has the provision for only one tetrahedral site, 1(a), (0, y, 0) with y approximately $\frac{1}{4}$ (or $\frac{3}{4}$), but in this space group the twofold positions include y as an additional variable, which we can nevertheless expect

 Table 4. Tetrahedral interatomic distances and angles

$\begin{array}{c} Nb(1)-O(19) \\ Nb(1)-O(21) \\ O(19)-O(19') \\ O(21)-O(21') \\ O(21)-O(21) \end{array}$	$1.68 \pm 0.05 \text{ Å} \\ 1.65 \pm 0.05 \\ 2.76 \pm 0.10 \\ 2.69 \pm 0.10 \\ 2.69 \pm 0.07 \\ 1.65 \\ 1$
O(19) - O(21)	2.03 ± 0.01 2.74 ± 0.07
O(19')-Nb(1)-O(19)	110·4°
O(21)-Nb(1)-O(21) O(19')-Nb(1)-O(21)	109.1 107.7
O(19)-Nb(1)-O(21)	109.5

THE HIGH TEMPERATURE FORM OF NIOBIUM PENTOXIDE

hkl	F	F	hkl	F	F	hkl	- F	F	- hkl	F	FI	hkl l	F	F_	hkl	F F	l	hkl	F	\F_
0 0 1	* 0 0.0	58 75	300	< 23 4 25	9 32	502	 ✓ 28 ✓ 28 ✓ 28 	с 39 49	801 802	o <42 88	3 91	$\frac{10}{10}$ 0 10 $\frac{10}{10}$ 0 11 \checkmark	48	42 23	$\frac{13}{13}$ 0 1 $\frac{13}{13}$ 0 2	55 5 76 7	5	16 0 9 16 0 10	<38 <26	34 11
002003004	66 39	63 36 124	3 0 2 3 0 3 3 0 4	57 132 119	60 158 137	505	< 29 < 32 183	41 50 166	803 804 805	47 86 148	67 90 155	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	219 55 58	217 14 34	$\frac{13}{13}$ 0 3 $\frac{13}{13}$ 0 4 $\frac{13}{13}$ 0 5	64 6 <52 5 <51 4	9. 4 4	$\frac{16}{16}$ 0 1 16 0 2	<62 < 61	48 6
006	80 67 60	73 61 71	305 306 307	38 42 55	38 61 40	507 508 509	36 39 42	36 33 74	806 807 808	422 266 60	485 297 37	$\frac{10}{10} 0 15 < \frac{10}{10} 0 16 $	د 60 139 د 64	57 141 13	$\frac{13}{13}$ 0 6 $\frac{13}{13}$ 0 7 $\frac{13}{13}$ 0 8	< 51 5 < 52 1 200 21	1 6 2	$\frac{16}{16}$ 0 3 $\frac{16}{16}$ 0 4 $\frac{16}{16}$ 0 5	106 159 524	88 136 574
0 0 9 0 10 0 11	176 87 < 53	190 78 46	308 309 3010	109 52 96	100 58 84	5 0 10 5 0 11 5 0 12	64 < 49 52	78 23 57	809 8010 8011	< 62 < 64 < 64	11 18 36	$\frac{10}{10}$ 0 18 $\frac{10}{10}$ 0 19 $\frac{10}{10}$ 0 20	64 108 104	79 106 104	$\frac{13}{13}$ 0 9 $\frac{13}{13}$ 0 10 $\frac{13}{13}$ 0 11	219 22 107 9 95 8	9 2 5	$\frac{16}{16}$ 0 6 $\frac{16}{16}$ 0 7 $\frac{16}{16}$ 0 8	59 59 ≺59	50 63 8
0 0 12 0 0 13 0 0 14	<57 <60 <62	39 6 35	3 0 11 3 0 12 3 0 13	144 296 263	128 260 261	$\frac{5}{5}$ 0 13 $\frac{5}{5}$ 0 14 $\frac{5}{5}$ 0 15	55 58 < 60	59 69 1	8 0 12 8 0 13 8 0 14	<01 <59 53	31 29 37	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	369 <51 76	373 17 61	$\frac{13}{13}$ 0 12 $\frac{13}{13}$ 0 13 $\frac{13}{13}$ 0 14	57 7 83 6 85 5	0 8 2	$\frac{16}{16}$ 0 9 $\frac{16}{16}$ 0 10 $\frac{16}{16}$ 0 11	< 59 <60 <60	37 21 38
0 0 15 0 0 16 0 0 17	∠64 <63 <61	14 5 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 62 59	47 42 60	5 0 16 5 0 17 5 0 18 5 0 18	< 62 < 64 126	21 52 96	8 0 15 8 0 16 8 0 17	181 114 21	185 131 29	11 0 0 24 <	71	60	$\frac{13}{13}$ 0 15 $\frac{13}{13}$ 0 16 $\frac{13}{13}$ 0 17	62 6 141 13 325 39	0	$\frac{16}{16} 0 12$ $\frac{16}{16} 0 13$ $\frac{16}{16} 0 14$	< 61 < 61 141	58 44 115
0 0 18 0 0 19 0 0 20	169 < 52 < 44	177 13 72	3 0 17 3 0 18 3 0 19	122 < 48 < 39	128 17 2	5 0 19 5 0 20 5 0 21	<pre> 187 </pre> <pre> <pre></pre></pre>	10 10 103	801 802 803	54 205	38 182 168	11 0 1 4 11 0 2 4 11 0 3 4	< 54 < 57 < 59	21 18 21	$\frac{13}{13}$ 0 19 $\frac{13}{13}$ 0 20 13 0 21	<62 3 <60 3	8	$\frac{16}{16}$ 0 16 $\frac{16}{16}$ 0 17 $\frac{16}{16}$ 0 18	< 64 < 64 88	11 10 83
	<13 <18	15 28	$\frac{3}{3}$ 0 1 $\frac{3}{3}$ 0 2	< 21 < 22	7 8	600 601	47 < 36	38 24	804 805 806	73 < 37 < 38	55 24 39	11 0 5 < 11 0 6 11 0 7 <	<00 88 <64	5 76 15	$\frac{13}{13}$ 0 22 $\frac{13}{13}$ 0 23 13 0 24	115 12 <45 1 <36 3	6 3 2	$\frac{16}{16}$ 0 19 $\frac{16}{16}$ 0 20 16 0 21	<00 <58 76	26 7 69
102 103 104	22 53 108	43 67 130	$\frac{3}{3}$ 0 3 $\frac{3}{3}$ 0 4 $\frac{3}{3}$ 0 5	< 24 < 26 78	12 28 72	602 603 604	< 38 91 44	2 99 55	807 808 809	<39 <41 <43	34 9 26	11 0 8 4 11 0 9 4 11 0 10	< 64 < 62 134	26 39 108	14 [°] 00 1401	142 12 60 6	.7 53	$\frac{16}{16}$ 0 22 $\frac{16}{16}$ 0 23 $\frac{16}{16}$ 0 24	120 207 <35	105 197 4
105 106 107	∠34 <37 <41	12 7 15	$\frac{3}{3}$ 0 6 $\frac{3}{3}$ 0 7 $\frac{3}{2}$ 0 8	32 <36 <39	40 23 19	605 606 607	46 70 270	50 79 273		122 378 225	114 541 261	11 0 11 4 11 0 12 4 11 0 13	<56 <51 44	4 44 48	14 0 2 14 0 3 14 0 4	116 11 148 12 270 26	4 23 50	17 0 0 17 0 1 17 0 2	<64 < 64	20 44
108 109 1010	45 48 48 452	46 37 36	$\frac{3}{3}$ 0 10 $\frac{3}{3}$ 0 11 $\frac{3}{3}$ 0 12	102	100 9	609 6010	< 59 < 60 < 63	10 3 23 57	8 0 13 8 0 14 8 0 15 8 0 16	81 85	87 76 33	$\frac{11}{11}$ 0 1	77 84 66	65	1405 1406 1407 1408	62 4 <60 1	17	1702 1703 1704 1705	< 60 < 58 < 54	33 27
1 0 12 1 0 13 1 0 14	73 208	59 207 24	$\frac{3}{3}$ 0 13 $\frac{3}{3}$ 0 14 $\frac{3}{3}$ 0 15	126 462 183	126 575 197	6 0 12 6 0 13 6 0 14	90 <63 <60	80 18 3	8 0 17 8 0 18 8 0 19	90 < 64 76	52 44 50	$\frac{11}{11}$ 0 3 $\frac{11}{11}$ 0 4 11 0 5	92 120 111	80 103 106	14 9 9 14 0 10 14 0 11	73 9 <43 1 <38 1	0	1706 1707 1708	<50 <45 ≼37	11 8 39
1 0 15 1 0 16 1 0 17	64 88 120	95 89 114	$\frac{3}{3}$ 0 16 $\frac{3}{3}$ 0 17 $\frac{3}{3}$ 0 18	< 64 < 64 87	10 52 87	6 0 15 6 0 16 6 0 17	∠55 384 ∠42	1 413 10	$\frac{8}{8}$ 0 20 $\frac{8}{8}$ 0 21 $\frac{8}{8}$ 0 22	168 <55 <49	166 8 22	$\frac{11}{11}$ 0 6 $\frac{11}{11}$ 0 7 $\frac{11}{11}$ 0 8	163 207 337	160 247 446	$14 \ 0 \ 12$ $\overline{14} \ 0 \ 1$	< 25 81 7	1	1709 <u>17</u> 01	<24 142	9 139
1 0 18 1 0 19 1 0 20	₹ 55 69 57 € 7 57	29 82 58	$\frac{3}{3}$ 0 19 $\frac{3}{3}$ 0 20 $\frac{3}{2}$ 0 21	117 < 53 < 46	116 0 10	6 0 18 <u> 5</u> 0 1 <u> 5</u> 0 2	42	50 138	8 0 23 8 0 24	< 41 < 29 75	3		<49 <50 <52	25 45	$\frac{14}{14} 0 2$ $\frac{14}{14} 0 3$ $\frac{14}{14} 0 4$	< 55 1 < 55 1 122 9		$\frac{17}{17}$ 0 2 $\frac{17}{17}$ 0 3 $\frac{17}{17}$ 0 4	<64 <62 <62	49 40 28
$\frac{1}{1}$ 0 21	<13	18 9 41	400 401 402	60 < 29	57 43 39	603 604 605	139 119 92	157 138 82	901 902 903	203 395 132	197 513 105	$\begin{array}{c} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	< 56 < 59 74	2 47 72	$ \begin{array}{r} 1 \hline 1 \hline 1 \hline $	<54 3 <54 3 <54 4	19	$\frac{17}{17}$ 0 6 $\frac{17}{17}$ 0 7 $\frac{17}{17}$ 0 8	84 86 183	75 72 160
$\frac{1}{1}$ 0 3 $\frac{1}{1}$ 0 4 $\frac{1}{1}$ 0 5	115 206 470	127 326≏ 904≃	403 404 405	83 < 60 76	73 48 79	606 607 608	77 104 78	65 122 81	904 905 906	74 78 58	70 80 34	$ \frac{11}{11} 0 16 \\ \frac{11}{11} 0 17 \\ \frac{11}{11} 0 18 4 $	88 110 <64	85 88 10	$\frac{14}{14}$ 0 9 $\frac{14}{14}$ 0 10 $\frac{14}{14}$ 0 11	< 55 < 56 57 57	4 32 58	$\frac{17}{17}$ 0 9 $\frac{17}{17}$ 0 10 $\frac{17}{17}$ 0 11	280 306 ≮61	265 316 35
$\frac{1}{1}$ 0 6 $\frac{1}{1}$ 0 7 $\frac{1}{1}$ 0 8	163 128 100	167 145 85	406 407 408	139 279 448	121 279 511		103 180 136	106 188 125	907 908 909	74 108 90	49 85 75	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<62 <60 160	13 25 176	$\frac{14}{14}$ 0 12 $\frac{14}{14}$ 0 13 $\frac{14}{14}$ 0 14	< 59 253 30 106 8	8 01 34	17 0 12 17 0 13 17 0 14	88 <63 78	64 22 93
$\frac{1}{1}$ 0 9 $\frac{1}{1}$ 0 10 $\frac{1}{1}$ 0 11	∠ 45 108 73	36 100 63 23	4 0 9 4 0 10 4 0 11 4 0 12	< 57 < 60	42 33	6 0 12 6 0 13 6 0 14 6 0 15	<54 < 58 85	19 12 47 80	9 0 10 9 0 11 9 0 12 9 0 13	168 191 < 59 < 54	148 170 12 2	$\frac{11}{11}$ 0 22 $\frac{11}{11}$ 0 23 $\frac{11}{11}$ 0 24	78 151	92 169	$\frac{14}{14}$ 0 15 $\frac{14}{14}$ 0 16 $\frac{14}{14}$ 0 17 14 0 18	< 64 < 64 < 64	9 17 0 8	$\frac{17}{17} 0 16$ $\frac{17}{17} 0 16$ $\frac{17}{17} 0 17$	< 64 < 64 < 63 87	0 45 81
$\frac{1}{1}$ 0 13 $\frac{1}{1}$ 0 14 $\frac{1}{1}$ 0 15	 ² 123 109 	16 99 84	4 0 13 4 0 14 4 0 15	64 < 63 < 61	54 9 27		<62 64 78	31 60 63	9 0 14 9 0 15 9 0 16	< 49 91 < 28	3 88 32	12 0 0 12 0 1 12 0 2	53 87 < 57	52 85 27	$\frac{14}{14}$ 0 19 $\frac{14}{14}$ 0 20 14 0 21	< 61 2 <59 3 <56 3	20 34 33	$\frac{17}{17}$ 0 19 $\frac{17}{17}$ 0 20 17 0 21	< 59 < 57 < 53	40 3 2
$\frac{1}{1}$ 0 16 $\frac{1}{1}$ 0 17 $\frac{1}{1}$ 0 18	64 62 <59	63 45 20	4 0 16 4 0 17 4 0 18	57 125 62	67 103 56		87 <58 <52	96 28 0	901 902	59 <41	40 23	12 0 3 12 0 4 12 0 5	59 61 147	50 66 136	14 0 22 14 0 23 14 0 24 14 0 24	366 3 <45 36	77 22 49	$\frac{17}{17}$ 0 22 $\frac{17}{17}$ 0 23 17 0 24	<48 109 ≼33	10 113 17
$\frac{1}{1}$ 0 19 $\frac{1}{1}$ 0 20 $\frac{1}{1}$ 0 21	< 54 <48 <39	26 0 45	4 0 19 X 0 1	232	18	$\frac{6}{6}$ 0 22 7 0 0	×36	54 61	903	< 39 < 39 < 39 < 40	11 21	12 0 7	<64 <62	29 15 49	15 0 0	404 4	52	18 0 0 18 0 1 18 0 2	<62 <61	7 28 26
200	74 222	74 22	4 0 2 4 0 3 4 0 4	78 < 25 < 28	100 55 60	701 702 703	79 172 87	76 155 75	907 908 909	170 60 445	148 66 34	12 0 10 12 0 11 12 0 12	113 < 52 55	111 15 67	15 0 2 15 0 3 15 0 4	< 64 < 64 < 64	11 17 51	18 0 2 18 0 3 18 0 4 18 0 5	< 57 65 < 49	21 69 21
202 203 204	< 25 < 29 32	4 5 35	405 406 407	<pre>< 30 < 32 < 36</pre>	41 13 31	704 705 706	<46 <49 <52	16 31 1	9 0 10 9 0 11 9 0 12	47 99 <53	47 97 43	12 0 13 12 0 1	116 52	112 42	15 0 5 15 0 6 15 0 7	< 61 < 60 < 56	37 32 21	18 0 6 18 0 7 18 0 8	< 43 < 36	5 29 108
205206207	36 39 60	41 48 61	$\frac{4}{4}$ 0 8 $\frac{4}{4}$ 0 9 $\frac{4}{4}$ 0 10	< 39 < 42 101	13 8 104	707 708 709	124 59 61	122 68 65	$\frac{9}{9}$ 0 13 $\frac{9}{9}$ 0 14 $\frac{9}{9}$ 0 15	< 54 < 58 60	22 16 71	$\frac{12}{12} \\ 0 \\ 3 \\ \frac{12}{12} \\ 0 \\ 4 \\ 12 \\ 0 \\ 5 \\ 1 \\ 0 \\ 5 \\ 1 \\ 0 \\ 5 \\ 1 \\ 0 \\ 5 \\ 1 \\ 0 \\ 5 \\ 1 \\ 0 \\ 0$	< 50 139 348	10 134 414	15 0 8 15 0 9 15 0 10	73 < 45 < 39	63 30 19	$\begin{array}{c} \overline{18} & 0 & 1 \\ \overline{18} & 0 & 2 \\ \hline 18 & 0 & 2 \end{array}$	<64 90	39 65
208 209 2010 2011	<pre></pre>	274 37 50 27	$\frac{4}{4}$ 0 12 $\frac{4}{4}$ 0 13 $\frac{4}{4}$ 0 14	52 55	60 63	7 0 10 7 0 11 7 0 12 7 0 13	417 63 <61	413 73 42	$\frac{7}{9}$ 0 17 $\frac{9}{9}$ 0 18 $\frac{9}{9}$ 0 19	64 <64 <62	84 36 0	$\frac{12}{12}$ 0 6 $\frac{12}{12}$ 0 7 12 0 8	136 109 130	159 98 124	$\frac{15}{15}$ 0 1	< 60 3 < 59	35	$\frac{18}{18}$ 0 4 $\frac{18}{18}$ 0 5 18 0 6	<03 <64 <64 118	51 2 109
2 0 12 2 0 13 2 0 14	<60 <62 <64	46 25 23	$\frac{4}{4}$ 0 15 $\frac{4}{4}$ 0 16 $\frac{4}{4}$ 0 17	< 61 63 100	31 75 91	7 0 14 7 0 15 7 0 16	< 57 < 52 63	55 16 67	9 0 20 9 0 21 9 0 22	< 60 68 < 50	49 67 20	$\frac{1}{12}$ 0 9 $\frac{1}{12}$ 0 10 $\frac{1}{12}$ 0 11	133 137 214	156 143 226	$\frac{15}{15}$ 0 3 $\frac{15}{15}$ 0 4 $\frac{15}{15}$ 0 5	< 59 < 58 < 57	28 21 16	$\frac{18}{18}$ 0 7 $\frac{18}{18}$ 0 8 18 0 9	77 88 < 62	77 84 42
2 0 15 2 0 16 2 0 17	< 64 86 377	18 69 372	$\frac{4}{4}$ 0 18 $\frac{4}{4}$ 0 19 $\frac{4}{4}$ 0 20	93 464 < 54	86 538 50	7017	49	(> 56	9 0 23 9 0 24	< 42 < 32	19	$\frac{12}{12} 0 12$ $\frac{12}{12} 0 13$ $\frac{12}{12} 0 14$ $\frac{12}{12} 0 15$	380 243 <59	520 267 10	$\frac{15}{15}$ 0 6 $\frac{15}{15}$ 0 7 $\frac{15}{15}$ 0 8	< 57 < 57 < 57	23 54 31	$\frac{18}{18} 0 10$ $\frac{18}{18} 0 11$ $\frac{18}{18} 0 12$	109 109 90	87 88 76
2 0 18 2 0 19 2 0 20	104 45 34	40 43	4 0 21 4 0 22 4 0 23	<41 92	34 114	$\frac{7}{7}$ 0 2 $\frac{7}{7}$ 0 3 $\frac{7}{7}$ 0 4	< 34 < 33 < 85	25 7 74	10 0 1 10 0 2 10 0 3	<49 < 51 65	20 36 88	$\frac{12}{12}$ 0 16 $\frac{1}{12}$ 0 17 $\frac{1}{12}$ 0 18	< 63 110 < 64	10 132 11	15 0 9 15 0 10 15 0 11 15 0 12	<58 <59	23	$\frac{18}{18} 0 14$ $\frac{18}{18} 0 14$ $\frac{18}{18} 0 15$	417	479 184
$\frac{2}{2}$ 0 1 $\frac{2}{2}$ 0 2 $\frac{2}{2}$ 0 3	94 <19 <22	121 26 7	500 501 502	31 <32 <35	49 29 9	705 706 707	85 230 352	74 239 442	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	68 101 291	61 108 295	12 0 19 12 0 20 12 0 21	62 74 160	63 90 155	$\frac{15}{15}$ 0 13 $\frac{15}{15}$ 0 14 $\frac{15}{15}$ 0 15	< 61 < 61 < 63	52 28 2	$\frac{10}{18}$ 0 17 $\frac{18}{18}$ 0 18 18 0 19	<61 <60 100	57 42 108
204 205 206	<pre><26 100 57</pre>	7 89 65	503 504 505	44 <41 <44	55 25 33	708 709 7010	153 135 109	124 137 113	10 0 7 10 0 8 10 0 9	< 62 < 64 < 64	8 4 18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 52 < 45 < 36	27 12 32	$\frac{15}{15}$ 0 16 $\frac{15}{15}$ 0 17 $\frac{15}{15}$ 0 18	≺64 <64 252 2	46 15 65	$\frac{18}{18}$ 0 20 $\frac{18}{18}$ 0 21 $\frac{18}{18}$ 0 22	<55 <51 46	23 11 50
207 208 209	109 204 534	115 251 793*	506 507 508	46 50 93	33 60 86	7011 7012 7013	48 114 94	98 93	10 0 10	< 60 < 55	66 .1	12 0 25	113	87	$\frac{15}{15}$ 0 19 $\frac{15}{15}$ 0 20 $\frac{15}{15}$ 0 21	< 59 < 55	3 39 51	$\frac{18}{18}$ 0 23 18 0 24	125 <30	105 8
$\frac{2}{2}$ 0 10 $\frac{2}{2}$ 0 11 $\frac{2}{2}$ 0 12 $\frac{1}{2}$ 0 12	410 142 108	545* 107 100 47	509 5010 5011	\\$7 \lambda 60 <	35 13 30 172	7014 7015 7016 7016 7017	114 158 <62 <64	94 136 46 31	$10 \ 0 \ 13$ $10 \ 0 \ 14$ $10 \ 0 \ 15$	< 50 < 42 102	15 16 86	1302 1303 1303	100 ∠ 60 62 ∠ 62	61 10 60	$\frac{15}{15}$ 0 22 $\frac{15}{15}$ 0 23 $\frac{15}{15}$ 0 24	<50 <44 36	46 23 64	19 0 0 19 0 1 19 0 2	95 92 110	76 83 102
$\frac{2}{2}$ 0 14 $\frac{2}{2}$ 0 15 $\frac{2}{2}$ 0 15	85 <62 < 64	104 43 22	5 0 13 5 0 14 5 0 15	<64 <61 <59	49 5 3	7 0 18 7 0 19 7 0 20	<64 <61 83	10 26 69	10 0 1 10 0 2 10 0 3	< 45 < 43 570	1 2 814 3	13 0 5 13 0 6 13 0 7	156 90 140	163 82 122	16 0 0 16 0 1 16 0 2	<64 <64 <64	16 25	1903 1904 1905 1904	103 94 151 150	68 140 150
2 0 17 2 0 18 2 0 19	< 63 60 < 57	6 39 26	5 0 16 5 0 17 5 0 18	120 < 17 < 38	114 35 19	7 0 21 7 0 22 7 0 23 7 0 23	<54 <48 <39	15 26 0	10 0 4 10 0 5 10 0 6	<42 <42 <43	30 4 39	13 0 8 13 0 9 13 0 10	186 310 226	162 285 198	16 0 3 16 0 4 16 0 5	< 63 < 61 < 59	22 57 8	1901 1902	107 <62	95 33
$\frac{2}{2}$ 0 20 $\frac{2}{2}$ 0 21 $\frac{2}{2}$ 0 22	451 43 55	38 43 44	501	<28	39	7024 800	<24 <40	28 1	$\frac{10}{10}$ 0 7 $\frac{10}{10}$ 0 8 $\frac{10}{10}$ 0 9	62 < 45 66	59 2 47	13 0 11 13 0 12 13 0 13	∠45<38<23	13 10 26	16 0 6 16 0 7 15 0 8	<55 <51 <40	8 11 22	$\frac{19}{19} \begin{array}{c} 0 \\ 0 \\ 19 \\ 19 \\ 0 \\ 5 \\ 19 \\ 0 \\ 5 \\ 5 \\ 19 \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	<64 <64 <64	37 45 40

Table 5. Comparison of observed and calculated intensities

* Affected by extinction. ** Unobservable.

B. M. GATEHOUSE AND A. D. WADSLEY

•

Table 5 (cont.)

hkl			Fo	F _c	hkl	Fo	F
$\frac{17}{17}$ $\frac{17}{17}$ $\frac{18}{18}$	1 1 1 1	21 22 23 0 1	≤52 ≤46 67 <67 <64 ≤62	24 37 65 28 32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74 ≺56 <58 <58 <60 <60	70 44 50 38 35 35
18 18 18	1 1 1	234	< 61 < 58 < 52	24 64 36	$\frac{22}{22}$ 1 9 $\frac{22}{22}$ 1 10 $\frac{22}{22}$ 1 11	461 61 402	23 74 430
$\frac{18}{18}$	1	1 2	230 <67	186 21	$\frac{\overline{22}}{22}$ 1 12 $\frac{22}{22}$ 1 13 $\overline{22}$ 1 14	≺60 ≺60 ≺58	26 36 20
$\frac{18}{18}$ $\frac{18}{18}$	1 1 1	3 4 5	<67 <67 <67	30 32 28	$\frac{22}{22}$ 1 15 $\frac{22}{22}$ 1 16 $\frac{22}{22}$ 1 17	< 58 56 < 56	32 56 26
$\frac{18}{18}$ $\frac{18}{18}$	1 1 1	6 7 8	<67 <67 <67	22 28 37	$\frac{22}{22}$ 1 18 $\frac{22}{22}$ 1 19 $\frac{22}{22}$ 1 20	< 50 < 46 146	20 18 142
18	l	10	454	426	23 1 2	<40	34
$\frac{18}{18}$ $\frac{18}{18}$	1 1 1	11 12 13	267 67 267	41 58 56	$\frac{23}{23}$ 1 3 $\frac{23}{23}$ 1 4 $\frac{23}{23}$ 1 5	<45 <48 <51	18 42
$\frac{18}{18}$ $\frac{18}{18}$	1 1 1	14 15 16	<67 66 <65	35 53 60	$\frac{23}{23}$ 1 6 $\frac{23}{23}$ 1 7 $\frac{23}{23}$ 1 8	< 53 212 < 56	36 154 23
18 18 18	1 1	17 18 19	64 < 62 118	70 20 122	$\frac{23}{23}$ 1 10 $\frac{23}{23}$ 1 11	< 50 < 56 < 56	20 30
$\frac{18}{18}$ $\frac{18}{18}$	1 1 1	20 21 22	<54 <50 <50	22 18 21	$\frac{23}{23}$ 1 12 $\frac{23}{23}$ 1 13 $\frac{23}{23}$ 1 14	456	20 76
18	1	0	<61 <61	20	$\frac{23}{23}$ 1 15 $\frac{23}{23}$ 1 16 $\frac{23}{23}$ 1 17	400 49	430
19 19 19 19	1 1 1 1	234	88 470 46	52 78 464 66	$\frac{23}{23}$ 1 18 $\frac{23}{23}$ 1 19 $\frac{23}{1}$ 1 20	≺42 51	18 50
$\frac{19}{19}$ $\frac{19}{19}$	1 1 1 1 1	1 2 3	≺ 63 ≺65 ≺66	42 38 29	$\frac{24}{24}$ 1 3 $\frac{24}{24}$ 1 4 $\frac{24}{24}$ 1 5 24 1 6	126 ≮40 ≮42 ≮46	91 18 24 30
19 19 19	1 1 1	4 5 6	≮67 94 242	36 70 216	$\frac{24}{24}$ 1 7. $\frac{24}{24}$ 1 8 $\frac{24}{1}$ 1 9	≺48 <49 <51	27 26 32
19 19 19	r 1 1	7 8 9	<67 <67 <67	22 34 22	$\frac{24}{24}$ 1 10 $\frac{24}{24}$ 1 11 $\frac{24}{1}$ 1 12	∠51 <51 218	25 36 178
19 19 19	1 1 1	10 11 12	267 267 267	29 26 21	$\frac{24}{24}$ 1 13 $\frac{24}{24}$ 1 14 $\frac{24}{1}$ 1 15	50 48 48	40 36 43
19 19	1	13 14 15	94 210 354	89 184 370	$\frac{24}{24}$ 1 16 $\frac{24}{24}$ 1 17 $\frac{24}{24}$ 1 18	56 74 68	70 45 67
19	1	16 17 18	102	76 96 58	$\frac{24}{25}$ 1 5	<31	140
$\frac{19}{19}$ $\frac{19}{19}$	1	20 21 22	118 90 110	92 70 104	$\frac{25}{25}$ 1 7 $\frac{25}{25}$ 1 8 $\frac{25}{25}$ 1 9	88 122 <43	66 82 21
20 20	1	0 1	98 ≼52	76 30	$\frac{25}{25}$ 1 10 $\frac{25}{25}$ 1 11 $\frac{25}{25}$ 1 12	<44 <44 <44	23 19 21
20 20 20	1	2 3 4	< 48 < 42 < 34	40 20 18	$\frac{25}{25}$ 1 13 $\frac{25}{25}$ 1 14 $\frac{25}{25}$ 1 15	<44 44 <41	38 44 27
20	1	1 2	220 310	208 308	$\frac{25}{25}$ 1 16 $\frac{1}{25}$ 1 17 $\frac{1}{26}$ 1 8	42 88 70	138
20 20 20		4 5 6	90 < 64 < 66	84 48 34	$\frac{26}{26}$ 1 9 $\frac{26}{26}$ 1 10 $\frac{26}{26}$ 1 11	<31 34 <34	24
20	1	7 8 9	< 66 < 66 < 66	22 25 30	$\frac{26}{26}$ 1 12 26 1 13	122	92 40
20 20 20		10 11 12	162 124 ≼66	136 100 29			
20 20 20	1	13 14 15	<64 <64 61	46 36 72			
20 20 20		16 17 18	< 62 < 60 116	22 32 128			
20		19 20 21	292 200 <44	279 175 29			
20		22	∠28 100	40 33 84			
21 21 21		123	84 142 98	73 117 98			
21		123	<52 <56 84	39 38 74			
21 21 21 21		4 5 6 7	< 61 138 434	43 118 432 200			
21		8	490 464 462 194	52 41			
21		16 17	<58 <56 <54	44 19 38			
21		1 19	50 66	50 80			
22		0 1 1 1 2	<41 <46 166	38 22 128			

to be close to 0 and $\frac{1}{2}$ for each atom. Cruickshank, Lynton & Barclay (1962), in an exhaustive analysis of thortveitite, $Sc_2Si_2O_7$, a structure with a similar ambiguity of space group, found that genuine small departures of the atoms from special positions were exceedingly difficult to recognize. This difficulty is almost universal in octahedral oxide structures with an axis of symmetry of length 3.8 Å, and we have simply tried to distinguish between the two alternatives with no attempt to refine y for any atom.

Two sets of $\hbar ll$ structure factors left no doubt that Nb₂O₅ is a polar structure, the reliability index for P2 being 12.1% and for P2/m 15.8%. Estimations of accuracy in the x and z coordinates were made from the r.m.s. values of slopes parallel to a and c in the final difference synthesis estimated in the regions of the map where atoms did not occur. In view of the uncertainties we have outlined these must necessarily be optimistic, but are included in Table 2 containing the fractional atomic parameters. Interatomic distances are given in Tables 3 and 4, a list of observed and calculated structure factors in Table 5, and the structure is illustrated by a ball-and-spoke drawing in Fig. 8.

Discussion

The ideal or undistorted structure of Nb₂O₅ can be broken up into two groups of octahedra, each being a fragment of the ReO₃ type (Figs. 4(a) and 4(b)). These are joined up by edge sharing into a threedimensional structure leaving tetrahedral positions where one niobium atom out of the twenty-eight in the unit cell is situated in an ordered way (Fig. 9).

Fig. 9. Nb₂O₅ drawn as idealized octahedra. The lighter form the 3×5 blocks of Fig. 4(a), the heavier are the 3×4 blocks of Fig. 4(b). The black circles are the atoms Nb(1) in tetrahedral positions and outline the unit cell in projection.

The metal atoms of octahedra joined by edges are repelled by each other, and the structure is not ideal. Although individual Nb–O bonds vary between 1.73 and 2.26 Å, the average of the six bonds for each metal lies between 1.96 and 2.02 Å, with an average of 1.99 Å for the eighty-four independent determinations. The oxygen–oxygen distances also have a wide range, and two atoms forming a common octahedral edge may be separated by as little as $2\cdot3$ Å to ensure Nb–O bonds of reasonable length. In other words if metals repel each other, the overlying oxygen atoms are squashed together. Similar short distances were reported for TiNb₂O₇ and Ti₂Nb₁₀O₂₉ (Wadsley, 1961), and also in Mo₁₇O₄₇ (Kihlborg, 1960) where they are associated with an unusual coordination for molyb-denum. In Nb₂O₅ the average O–O distance is 2.80 Å, and this leads to a formal ionic radius of 0.59 Å for Nb⁵⁺.

The tetrahedral Nb–O distances, given in Table 4, are very short, and no similar case has been reported. The y parameter of Nb(1) was arbitrarily assigned a value of $\frac{1}{4}$, but two of the bonds would be lengthened and two shortened if this were changed. O(19) and O(21) appear to have been correctly placed, and there is some evidence in the difference synthesis of anisotropic thermal motions of these atoms. There is good reason to believe that tetrahedral coordination is also present in the structures of other niobium oxides, some of which may be easier than the present one to refine in more detail.

Related structures

Polymorphs of Nb₂O₅

Niobium pentoxide crystallizes in several different modifications.* The orthorhombic low-temperature form, identified originally by Brauer (1941), has a sub-cell similar in some ways to α -UO₃ (Holser, 1956; Calvert & Draper, 1962) and not to the present structure. It is likely, however, that one or more varieties directly related to the high-temperature form, and very difficult to distinguish from it, could arise from changes associated with the ions in the tetrahedral positions. Firstly, the structure will become non-polar if these atoms are distributed statistically over the two sites illustrated by Fig. 7 in the space group P2/m. Secondly, the tetrahedral niobium could perhaps be shifted to one or more of the octahedral positions, p, q, r and s of Fig. 4(a) and (b). These possibilities could result from quenching below the melting point.

Homologues of Nb₂O₅

Two kinds of solid solution can be recognized in binary and ternary phase systems. The first, arising from the substitution in the solid of an atom by another of similar size and with the same valency and coordination number, is relatively straightforward. On the other hand the number of atoms of one kind or another in the unit cell will change if the compound is partly oxidized or reduced, or if one element is replaced by another of different valency. The unit cell contents of this second kind of solid solution, a nonstoichiometric compound, can be evaluated from the

* Roman or Greek letter prefixes to distinguish between them are used in different ways by different authors. density. To a first approximation the phase may then have an excess of one atom occupying interstitial positions within it, or a deficit where some atoms are assumed to be missing; in both cases structure, as well as composition, is a continuous variable.

Evidence for compounds with complex but invariant formulae, and comprising a family of equilibrium phases within the composition limits of a nonstoichiometric compound, is now accumulating. In any one system, these ordered structural homologues all contain the same kind of 'defect' which may or may not agree with the simpler interpretation of vacancies and interstitials, but they are possibly related to the solid solution by an order-disorder transition at some particular temperature (Wadsley, 1963).

Brauer (1941) proposed that Nb₂O₅ had a range of composition at high temperature extending perhaps to NbO_{2.40}, but Norin & Magnéli (1960) more recently prepared and identified the two previously unsuspected compounds NbO_{2.46} and NbO_{2.40}. If we assume the first is a structural homologue of Nb₂O₅, its symmetry and unit cell dimensions, as well as those of a hypothetical third phase NbO_{2.375}, can be predicted as the members n=7 and 5 of a series with the general formula Nb_{3n+1}O_{8n-2} and the space group P2.

A structure for NbO_{2.46}, or more correctly Nb₂₂O₅₄ (n=7), can be derived from the pentoxide (n=9) by omitting six niobium atoms and sixteen oxygen atoms from the unit cell. These six octahedra are a fragment of an S unit (Fig. 3), and the remainder of the octahedra join up as before with edges in common, while the tetrahedral niobium atoms, in projection, are still at the corners of the unit cell (Fig. 10). The ReO₃-type blocks are again of two sizes, 3×4 and 3×3 , both infinite in extension. NbO_{2.375} (or Nb₁₆O₃₈, the member n=5) is derived in exactly the same way; two S fragments are missing from Nb₂O₅, and the ReO₃-type blocks are reduced to 3×3 and 3×2 octahedra.

Fig. 10. Possible structure of $Nb_{22}O_{54}$ (cf. Fig. 9). ReO_3 -type blocks are 3×3 and 3×4 , with one tetrahedral metal at the origin in projection.

Norin & Magnéli's monoclinic unit cell for $Nb_{22}O_{54}$ had the dimensions

Table 6. Predicted unit cell dimensions of 'homologues' $Nb_{3n+1}O_{8n-2}$

System: monoclinic. Space group: P2 (or Pm)

n in formula $Nb_{3n+1}O_{8n-2}$	Possible compound	a	b	с	β
9	$Nb_{28}O_{70} (= Nb_{2}O_{5})$	21·16 Å	3.822 Å	19·35 Å	119·8°
7	$Nb_{22}O_{54} (= NbO_{2:454})$	21.2	3.82	15.6	124.5
5	$Nb_{16}O_{38} (= NbO_{2\cdot375})$	21.2	3.82	12.0	$132 \cdot 2$

$$a = 18.86, b = 3.822, c = 15.75$$
 Å, $\beta = 102^{\circ} 11'$.

This can be changed by the axial transform $101/010/00\overline{1}$ to

$$a = 21.86, b = 3.822, c = 15.75 \text{ Å}, \beta = 122^{\circ} 30',$$

and by comparison with Table 6 it appears that this phase could indeed be a homologue of Nb₂O₅ with a structure closely related to Fig. 10, if not identical with it. As yet there is no evidence that Nb₁₆O₃₈ exists. Homologues Nb_{3n+1}O_{8n-2} based upon this principle will arise only when n is odd, as significant structural changes are present when n is even (Roth & Wadsley, 1964).

References

- ANDERSSON, S. (1963). Acta Cryst. 16, A 21.
- BRAUER, G. (1941). Z. anorg. Chem. 248, 1.
- CALVERT, L. D. & DRAFER, P. H. G. (1962). Canad. J. Chem. 40, 1943.

- CRUICKSHANK, D. W. J., LYNTON, H. & BARCLAY, G. A. (1962). Acta Cryst. 15, 491.
- DAWSON, B. (1961). Acta Cryst. 14, 999.
- HOLSER, W. T. (1956). Acta Cryst. 9, 196.
- HOLTZBERG, F., REISMAN, A., BERRY, M. & BERKEN-BLIT, M. (1957). J. Amer. Chem. Soc. 79, 2039.
- KIHLBORG, L. (1960). Acta Chem. Scand. 14, 1612.
- NORIN, R. & MAGNÉLI, A. (1960). Naturwissenschaften, 47, 354.
- ROTH, R. S. (1959). J. Res. Nat. Bur. Stand. 62, 27.
- ROTH, R. S. & WADSLEY, A. D. (1964). Acta Cryst. To be published.
- SUZUKI, T. (1960). Acta Cryst. 13, 279.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- WADSLEY, A. D. (1961). Acta Cryst. 14, 664.
- WADSLEY, A. D. (1963). In Non-stoichiometric Compounds. Ed. MANDELCORN, L. p. 98-209. New York: Academic Press.
- WILLIS, B. T. M. (1963). Proc. Roy. Soc. A, 274, 122.

Acta Cryst. (1964). 17, 1554

The Crystal Structure of 3,3,4,4-Tetrahydrofurantetrol (An Application of Vector Verification)

BY ALAN D. MIGHELL AND ROBERT A. JACOBSON

Department of Chemistry, Princeton University, Princeton, New Jersey, U.S.A.

(Received 15 July 1963 and in revised form 30 January 1964)

A three-dimensional crystal structure analysis of 3,3,4,4-tetrahydrofurantetrol has determined that this molecule exists in a twisted configuration (44° ring twist), that the space group is $P\overline{4}2_1c$ with eight molecules per unit cell, and that the molecules lie in layers which are held together and interconnected by hydrogen bonds.

The trial model was obtained by a new method called vector verification. The method systematically checks, by applying space group symmetry and other conditions, each point in a threedimensional grid in electron density space. At each grid point, a series of vectors is computed and compared with the observed Patterson function, and only if the vectors exist in the Patterson map can the grid point be considered as a possibility for an atomic position. The trial model was refined using full matrix least squares to a final model having an agreement index of 0.11.

Introduction

Spectrograms in the ultraviolet, infrared and nuclear magnetic resonance reveal stabilization of the heterocycle, tetrahydro-3,4-furandione, in the dione form with no evidence of enolization. The dione rapidly adds water or alcohol and tends to exist with one or both ketone groups doubly substituted as a tetrol, hydroxydioxane, hydroxydioxolane or hemiketal (Kendall & Hajos, 1960). The subject of this investigation is the tetrol (3,3,4,4-tetrahydrofurantetrol). A small well-formed crystal was carefully selected and, because of instability in contact with air, was sealed in a glass capillary tube.